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Abstract

The generalized Riesz means, which were introduced by Ditzian (Acta Math. Hungar. 75
(1997) 165), are shown to be equivalent to the corresponding K-functionals in a general
setting. Similar results are also obtained for the Cesaro means.
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1. General notations and assumptions

We first introduce some notations from [3]. Let S be a nonempty set equipped with
a positive measure p and let L7(S), (1<p< o) denote the space of functions

1

on S with the usual norm |[f||p =(Js If PP du(x))p, 1<p<oo and ||f]],, =
ess sup, e [/ (x)]-

Suppose P(D) is a self-adjoint, unbounded operator on L?(S). We make the
following assumptions on P(D):

(i) P(D) has only discrete spectrum {—A(k)},~, and each eigenvalue —A(k)
corresponds to a finite-dimensional eigenspace Hy.

(i) 0 = A(0)<A(l)< - <A(k)<--- and A(k) is a polynomial in k.

(i) For some fixed pe[l, o], Hy < LP(S) (L7 (S) and

span U H, =L7(S).
k
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Throughout the rest of this paper, the letter B always denotes the space L?(.S) with
pe(l, oo] satisfying assumption (iii) above and with || - || denoting the norm || - [| .

Under the above assumptions, the projection Pif of f'€ B on Hy is obviously well
defined. For the formal expansion

o0

S~ P,

k=0

we define its /th order Cesaro means (as usual) by

: N4
oy () =Y HEPS,

/
= Av

where

I(k+¢+1)
k+ DI/ +1)

‘
A, = T
We make the following additional assumption on the Cesaro means:
(iv) For some ¢ = /(B)eN,
sup ey (NDII<C, B)IIf]]- (1.1)
We remark that as pointed out in [1,3], the above assumptions are very natural
and many differential operators and the expansions related to them, such as
spherical harmonics and the Laplace—Beltrami operator, Jacobi expansions and the
Jacobi operator, and Hermite and Laguerre expansions and their operators, satisfy
these assumptions.

Now let us define the fractional differential operator P(D)* ( for a given a), in the
sense of distributions, by

POV~ (iR P
k=0

We write (—P(D))"f = f® if P(D)*feB. To each operator (—P(D))" is associated
with a K-functional
K(f 1) = inf{||[f — gl| +1]lg||: ¢* € B}.
It will be convenient to use the notation
A, )= B(f, 1),
which means that there is a C>0, independent of f/ and ¢, such that
C'A(f, 1)< B(f, 1) <CA(f, 1).
A strong converse inequality of type B ( in the sense of [4]) is a result of the type

1) =+ 1T () =Sl =Kl 1) (1.2)
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and a strong converse inequality of type A will be (1.2) when we can drop the second
term on its left-hand side. Here {7}},., is a given family of continuous linear
operators on B.

For further details of the background information, we refer the reader to [2,5-7]
and to [1,3], where many impressive results were obtained in the above setting and
many interesting applications were given to some known differential operators and
the expansions related to them.

Except when otherwise stated, the letter C denotes a general constant depending
only on the parameters indicated as subscripts, and possibly also on the space B and
the operator P(D).

2. Riesz means

For 2>0, «>0 and /€N, the generalized Riesz means, which were introduced in
[3], are defined by

Rins(f) = Wg;z (1 _ (@))’ Pu(f).

It follows from [3] that under assumption (iv),
sup 1Ry )< CIIS] (2.1)
r>

with C independent of f.
In this section, we shall prove the following theorem, which was conjectured in [3]
under hypothesis (2.1):

Theorem 2.1. Suppose /€N and (1.1) is satisfied. Then for A>0, a>0 and meN,
(Rosr = I)"f1| % Ko (f, 4777).

Theorem 2.1 for / =1 is due to [3]. For /=2, a result of type B like (1.2) was
obtained in [1, (3.10), p. 181]; [3, (5.7), p. 335]. For all /> 1, it was shown in [3, (5.1),
p. 334] that

N(Rime = D" FI1 + 27" | (Rt )™ | = Ko (f, 47, (2.2)
where the operator R; ,/,, is defined by
m k 1 m "
Rigem=1T—(I=Rip)" =Y (-1)"" v | R (2.3)
k=1

To prove Theorem 2.1, we need the following lemmas.

Lemma 2.2. Suppose /€N is as in assumption (iv) and ne CV/+*V(R.) is of compact
support. For A>0, define

v =3 n(*2) i,

k=0
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Then
1V NON< G

with C,>0 independent of f and 1> 0.

Proof. Suppose supp n<=[0, a] with >0 depending only on 7, and suppose A(ny —
1)<ad<A(ng) with nyeN. Noticing that

Z/HLI <k+/>0k(f)

by assumption (ii), without loss of generality, we may assume the function A(x) is
strictly increasing on [0, 00).
By (1.1) and the Abel transformation, it suffices to prove

Z | Ay ( )) K <C,. (2.4)
Let o(x) = 11(‘(7”) Then a straightforward computation shows that
D (x)|<C fi ( )) L (2.5)
n Vi x+ 1)/+1

Noticing that

Amn(@) — o (0))

|1Pef]l = Clk+ 1) I,

A
for some Oy e[k, k + ¢ + 1], we get from (2.5)

‘A/-H ( >‘<Cn§( - >0M (2.6)

Now substituting (2.6) into the left-hand side of (2.4), taking into account the
monotonicity of A(x), we obtain (2.4) and complete the proof. [

Lemma 2.3. Suppose .>0 and R; , s nf is defined by (2.3). Then
1 “m om m
|(3)” e[t = Rz

with C>0 independent of 4 and f.
Proof. By (2.3) and (2.1), it is sufficient to prove

H (%) | (R?.,a,/f')(fxm)‘

<CIT = Rons)"fI- 2.7)
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We begin by fixing n, a C* function of compact support, defined on R, with the
properties that 7(x) = 1 for |x|< and 5(x) = 0 for |x|>1. Let

i =(1- (1)

We decompose the operator (1™ (R ../ ) ag

(3) R = 1l + 131 28)
where
- 5 o) (o)

First, we will prove for i = 1,2

TS/ CIT = Riar)" S, (2.9)

with C>0 independent of Z and f. For i = 1, let us rewrite 7}/ as

T =Y a(kJ)é(i(){C))Pk(h), (2.10)

A(k) <2
where

<(n) =

]7(’) tzxm

T @1

Noticing that

&) = 1) 5 eCE(R,)

(/ +3) (-1 <]j | )zw‘)

with supp ¢ = {r: 0<r<1}, we obtain (2.9) for i = 1, by Lemma 2.2, (2.1) and (2.10)-
Q.11).
Next, we prove (2.9) for i = 2. Define

vt = 3 (1-1("D)) i o

M) <2
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Below we will prove
U< Cllgll], (2.12)

with C >0 independent of /1 and g.
We rewrite U,(g) as

Ui(g) = Ul(9) + Ui (9),
where

vl = X (1-0(*2) etk 21+ mati neato)

Mk) <4

v = X (1-n("2) ated) | =gy 1 - matk )| et

A(k) <2
By Lemma 2.2 and (2.1), one can easily verify for i = 1
1U5(9)]I<Cllg]l. (2.13)
To deal with U7, we set
o(t) = (1 =n0)(1 =Y [y = 1 =m(1 = )], if 0si<1,
0 if t=1.

Then, a straightforward computation shows
(1= )" S gt
(1= (=)
where the C,,/; are constants depending only on m, / and j. This clearly implies

pe Cé“l)([Rg). Noticing that

Ui (g) = i @ (@) Pr(9),

k=0

<r<l1

) )

ENgI.

o(t) = (1 =n(1))

by Lemma 2.2, we get (2.13) for i = 2. Putting this together, we get (2.12).
Now noticing that

() = G) 0 R

by Bernstein’s inequality ( see [3, (3.5), p. 330]), we get from (2.1) and (2.12)
ITZON<CII = Riwe)" 11,
which, together with (2.9) and (2.8), yields (2.7). This completes the proof. [

Now Theorem 2.1 is an immediate consequence of Lemma 2.3 and (2.2).
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3. Cesaro means
In this section, we prove

Theorem 3.1. Suppose /€N and (1.1) is satisfied. Then
I = A~ K fg
N 0 ’N ’
where og = (deg A(x)) ™" and i(x) is as in assumption (ii).

Throughout the rest of this section, the symbol oy will always denote the number

m. The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.2. Suppose ¢(x),¢(x) are two algebraic polynomials of the same degree.
Assume there exists a positive integer ng, such that ¢(x)p(x)>0 whenever x =ny. For a
given r>0, define

) =S (29 by,
N E%Qwo g
Then
||TU)||<C((/),¢,V,H0)H/‘||
Proof. Let
v = (Geg) -

Noticing that ¢(x) and ¢(x) are polynomials of the same degree, one can easily
verify that

1 \/*2
|'I/(/+l>(x)|<c<x+l> ,  xX=n. (3.1)

Now let us define

(wk), k=,
=10, 0<k<np.

Using Abel’s transformation / + 1 times, taking into account (1.1), we obtain
o0
ITON<Cr Y 18 wlk 1111,
k=0

which, by (3.1), implies the desired result. [
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Lemma 3.3.
: 1
If = (<K (£.3)
with C>0 independent of N and f.

Proof. We get the idea from [3]. Let g = R, N o 1f with R,(N
20,7, A7

2 /1 defined as in

)50,

N
(2.3). Observing that ge @2, Hy and (A(5))” ~N, we get from (2.2) that

1 1
IF = ol + gl 1< € (71

On the other hand, by (1.1),

oy (1) = flI< lox () = o (@)l + ok (9) — gl + llg = /1]
< Cllf = gll + ok (9) - gll-

Hence, it suffices to prove that
4 ! (o)
llow(g) —gll<C 5 llg™ll- (3.2)
From assumptions (iii) and (iv), it follows that
. / o —
Jim oy (9) = gl =0,

which implies

NORYEDSNCAOEL M)
k=N
Y 1 Z 4 /(k+1)
= - i‘i/j + '
A k14 (k+1) /ZO: A7 k_jHPj(g). (3.3)

Let ne Cy° (Ry) be a C* function, defined on R, with the properties that #(x) = 1

N
for |x|<} and n(x) =0 for |x|>3. Then, noticing that ge @ ?_, H, by (1.1) and
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Lemma 3.2, we have

N N
2. Ap (k4 1) 2 ALk +1) ()
o~ Pi(g)|| = | | P

x (7 +1)[lg™]

A straightforward computation shows that

. /+1
A L+ I k+1 < l <i< E < é
‘A ("(N)lﬁ—l—j <C v , 0\]\4N\4k. (3.5)
Now substituting (3.5) into (3.4), taking into account (3.3), we obtain (3.2) and
complete the proof. [

. (3.4)

Lemma 3.4.

1 ° ¢ 1Y) (@) g s
- ¢ < _
(/1(1\’)> (en NI < CIf = oy (D],
with C independent of N and f.

Now Theorem 3.1 follows directly from Lemmas 3.3 and 3.4 and the fact that
A(N)™~ N. So, it remains to prove Lemma 3.4. To this end, we need some additional
lemmas.

Lemma 3.5. Let
/
N 1—AN*’C . 1<k<N,
ak: k AIKV'
0, k=N +1.

Then for i=0,1,...,/ + 1 and 1<k<[%N] +1,

. 1 i 1 i+1
|Aak|<C<<N) +(k—+1> )

Proof. We rewrite a; as

ai = by + ¢y, (3.6)
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where
N K\’
N ( k)” Ay,
a=—1-=] — <. (3.7)
k( N A}/v

Let o(#) = X1 — (1 —¢)). Noticing that
.
o) => (=1 eC™®|0, o]
and by = p(%), we get for ieZ,,

|Abk|<c( ! ) I<k<N.
N +1

Hence, by (3.6), it remains to show for i =0,1,...,/+ 1,

o 1 i+1 3
‘e <Cl —— Sk |+ .
| Aler C(k_H) . 1<k LN}JA

On account of (3.7), it suffices to prove for 0<i</ + 1,

. K\’ A 1 3
A <1 —> MR <G 1 I<k< [—N} +1. (3.8)
N Ay (N+1) 4
Noticing that
Ay = a3, o> -1, (3.9)

and (see [8, p. 77, (1.18)])

Aé—kiéuol o> —1, keN
KT r@o+1) k)) ’ ’

we get for 0<k<[EN]+1,

- i / . .
Kb By, [ o= it a oG ifosiss,
A‘ T4y )

0 ifi=/+1.
(3.10)
On the other hand, it is easy to verify that for 0<k < [%N] + 1,

Ai<1£>/ roen ) (1 =55 if o<,
N 0 ifi=/41,

(3.11)
with

0<0;p<i, i=0,1,.

eyl
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Now combining (3.10) and (3.11), we get for 0<i</ and 0<k<[IN] + 1,

Fif (K Avi) _ TC+D 1 k0N
N Ay | (4 —i+1)N N

(-8) ()

and for i=/+1and 0<k<[EN]+ 1,

2 K\ A,
A (1——) Nk — 0,
((1-4) -4

which gives (3.8) and completes the proof. [

Lemma 3.6. Suppose ay=0>0, k=0,1,.... Then

o o o o
A"a— < C(o,m)sup{| A"y, - A"agy, |2 1<iy, ju<n, 1<u<m<n,
k

it +iy 4 e iy =1}

Lemma 3.6 can be easily obtained by induction on # and using the following two
identities:

Lemma 3.7. Let

A/
Uk, 0<k<N,

0, k=N+1.

My =

Then for i=0,1,...,/+ 1 and%gkéN,

2 i
N e l
A (l—uk)’<C<N) . (3.12)
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Proof. First, we prove for i =0,1,...,7,
S IRY N
AN <Cl=), k==, 3.13
1 — gy (N) 8 ( )

and fori=/+1

, CHY™, i ¥<k<N -/ -2
/41 < (N)/ o s ’ (3.14)
1=y C)Y, i N—¢—1<k<N+/+1.
Since for i>0
- . - . N/ - .
Na. = A ’aN+1+/ + Z A ’“a_/, (3.15)
J=k
it is sufficient to prove (3.14). By (3.9), it is easy to verify that for 0<i</,
. 1\’
IA’ukKC() , k=0, (3.16)
N
and fori=7/+1
o 1 =0, if k=N,
Ry, = 4 N¢ (3.17)
0 otherwise.
A straightforward computation shows that
Ay
l—py>l-—F>— 3.18

whenever k>%.

Now applying Lemma 3.6 with n =7+ 1 and a, = 1 — p, we get, by (3.16) and
(3.18),
L | /41 .
SC(N> +C max |[A ],

1<j</+1

which, on account of (3.17), gives (3.14) and hence (3.13).
Next, we prove for i =0, ...,/ + 1,

|Ag|<C), k=K (3.19)

(3.19) follows from (3.16) and (3.17).
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Finally, we prove (3.12). By (3.15), it suffices to consider the case i = 7/ + 1. We use

the following identity
A+ 12 o 1
. k + 'ui A /+1 (1 )
 Hiegr41 — Mg

(%)
1=y
L+ - - 1
+ . AlluZA/-H—l< ) )
;( l , I — ey

We then get from (3.16), (3.17) and (3.19)

/+1
A/H ,Lti <C l +.
l—ﬂk N

This gives (3.12) and completes the proof. [

Proof of Lemma 3.4. Without loss of generality, we may assume Py(f) =0. Let
neCy (Ry) such that n(x) =1 for |x|<] and 5(x) =0 for |x|>1. We decompose

()™ (a5 ()™

(ﬁ) ()™ = Th) + T3 (). (3.20)

where

N oy 4/
(k) \™Ay_ k
T =2 (,L N) /’Ivi/vkn<N)Pk<f>,

=0
- SR o)

We will prove for i = 1,2,
1Ty O I = oy (D] (3.21)

For i = 1, by Berntein’s inequality and (1.1), we get

Nk [k
Tyv(l<C —n(—|P : 3.22
Imyni=c]S ()P (3.22)
Define
N k k
G\ — | —2— Pi(g). 3.23
W= 0(y) " (3.23)

Observe that for 1<k<N,

N A, N o\ _1 1
Sy (S I 3 SN (S T (S (R ) P}
k( A/N) k( < N+/)) 271"
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From Lemmas 3.5 and 3.6, it follows that

. k 1 1 /42 1 /+1
/41 K\ U ) b 1
s n<N)%(1_i/k) \C<(k+1> +<N) ’
a7

which, by (1.1), implies
1Gy (@)1 <Cllgll- (3.24)

Now combining (3.22)—(3.24), we obtain (3.21) for i = 1.
For i = 2, we define

N /
A%, 1 k
Gl = - Dt (1-0(y) )P0
—

k=0

We decompose G, as

G (9) = Gy'(9) + Gy (9),

where
AL (2
v () k
Gy'(g) =Y — (1 —17<N>>Pk(g),
k=0 1 — 2’;’“
N gl
A k
GV (g) = N (1 - n(—))Pk(g)
N ,; A%, N

From Lemma 3.7 and Abel’s transformation, it follows that
1Gx' (9)l1 < Cllgl|-

On the other hand, by assumption (iv) and Lemma 2.2, it is easy to verify

1GY*(9)1 < Cllgl|-
Thus

1@ (@) <Cllgll
Observing
mmHQ%Q%%U%WWW

by Bernstein’s inequality (see [3, (3.5), p. 330]), we derive (3.21) for i = 2. This
completes the proof. [

)

Remark 3.1. In assumption (iv) the condition ““/ is a positive integer” can be
removed. Indeed, a modification of the above proofs will show that Theorems 2.1
and 3.1 remain valid with / replaced by any positive number ¢ for which (1.1) is
satisfied.
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